Grupo de investigación en la química y la actividad biológica de plantas promisorias colombianas que busca encontrar compuestos naturales útiles para la salud, la alimentación y la industria. Aplicación de técnicas de biología molecular en la determinación de propiedades medicinales de productos naturales principalmente en cáncer. Correlación actividad –estructura molecular y aplicación de técnicas computacionales para el modelaje de estructuras moleculares. Procesos de síntesis y hemisintesis de moléculas biológicamente activas.


Quantification of two isomeric flavones in rat colon tissue using reverse phase high performance liquid chromatography

Background: Antineoplastic activity has been previously shown for two isomeric flavones, 5,7-dihydroxy-3,6,8-trimethoxy flavone (flavone A) and 3,5-dihydroxy-6,7,8-trimethoxy flavone (flavone B), against colon cancer cell lines (Thomas et al. in PLoS ONE 7:e39806, 5). Here, we present modified methods for the extraction and quantification of flavones A and B in rat colon tissue after intravenous dosing via high performance liquid chromatography, from the originally described procedure for extraction and quantification in rat plasma (Whitted et al. in J Chromatogr B Analyt Technol Biomed Life Sci 1001:150-155, 7). Results: Modifications included tissue homogenization (1 g tissue: 2 mL water), filtration of the supernatant with a PVDF membrane, and the use of only one calibration curve to determine the concentration of each flavone in colon tissue. Good separation was achieved and representative equations were linear with r 2 ≥ 0.99 for both flavones. Precision and accuracy for flavone A ranged from 0.88-24.03 and 109-116%. Precision and accuracy for flavone B ranged from 1.62-33.56 and 98-113%. Concentrations of 1639 ± 601 ng/g flavone A and 5975 ± 2480 ng/g of flavone B were detected in rat colon tissue 6 h post dosing. Conclusions: Modifications to the extraction methods for flavone A and flavone B from rat colon tissue had good separation, precision, and accuracy. © 2017 The Author(s).

Mechanism of Action of Two Flavone Isomers Targeting Cancer Cells with Varying Cell Differentiation Status

Apoptosis can be triggered in two different ways, through the intrinsic or the extrinsic pathway. The intrinsic pathway is mediated by the mitochondria via the release of cytochrome C while the extrinsic pathway is prompted by death receptor signals and bypasses the mitochondria. These two pathways are closely related to cell proliferation and survival signaling cascades, which thereby constitute possible targets for cancer therapy. In previous studies we introduced two plant derived isomeric flavonoids, flavone A and flavone B which induce apoptosis in highly tumorigenic cancer cells of the breast, colon, pancreas, and the prostate. Flavone A displayed potent cytotoxic activity against more differentiated carcinomas of the colon (CaCo-2) and the pancreas (Panc28), whereas flavone B cytotoxic action is observed on poorly differentiated carcinomas of the colon (HCT 116) and pancreas (MIA PaCa). Apoptosis is induced by flavone A in better differentiated colon cancer CaCo-2 and pancreatic cancer Panc 28 cells via the intrinsic pathway by the inhibition of the activated forms of extracellular signal-regulated kinase (ERK) and pS6, and subsequent loss of phosphorylation of Bcl-2 associated death promoter (BAD) protein, while apoptosis is triggered by flavone B in poorly differentiated colon cancer HCT 116 and MIA PaCa pancreatic cancer cells through the extrinsic pathway with the concomitant upregulation of the phosphorylated forms of ERK and c-JUN at serine 73. These changes in protein levels ultimately lead to activation of apoptosis, without the involvement of AKT. © 2015 LeJeune et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Exploring the nature of the H-bonds between the human class II MHC protein, HLA-DR1 (DRB*0101) and the influenza virus hemagglutinin peptide, HA306-318, using the quantum theory of atoms in molecules

Exploring the nature of the H-bonds between the human class II MHC protein, HLA-DR1 (DRB*0101) and the influenza virus hemagglutinin peptide, HA306-318, using the quantum theory of atoms in molecules

The nature of the H-bonds between the human protein HLA-DR1 (DRB*0101) and the hemagglutinin peptide HA306-318 has been studied using the Quantum Theory of Atoms in Molecules for the first time. We have found four H-bond groups: one conventional CO··HN bond group and three nonconventional CO··HC, π··HC involving aromatic rings and HN··HCaliphatic groups. The calculated electron density at the determined H-bond critical points suggests the follow protein pocket binding trend: P1 (2,311) >> P9 (1.109) > P4 (0.950) > P6 (0.553) > P7 (0.213) which agrees and reveal the nature of experimental findings, showing that P1 produces by a long way the strongest binding of the HLA-DR1 human protein molecule with the peptide backbone as consequence of the vast number of H-bonds in the P1 area and at the same time the largest specific binding of the peptide Tyr308 residue with aromatic residues located at the binding groove floor. The present results suggest the topological analysis of the electronic density as a valuable tool that allows a non-arbitrary partition of the pockets binding energy via the calculated electron density at the determined critical points. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group.

Exploring the electron density localization in single MoS2 monolayers by means of a localize-electrons detector and the quantum theory of atoms in molecules

The nature of the electron density localization in a MoS2 monolayer under 0 % to 11% tensile strain has been systematically studied by means of a localized electron detector function and the Quantum Theory of atoms in molecules. At 10% tensile strain, this monolayer become metallic. It was found that for less than 6.5% of applied stress, the same atomic structure of the equilibrium geometry (0% strain) is maintained; while over 6.5% strain induces a transformation to a structure where the sulfur atoms placed on the top and bottom layer form S2 groups. The localized electron detector function shows the presence of zones of highly electron delocalization extending throughout the Mo central layer. For less than 10% tensile strain, these zones comprise the BCPs and the remainder CPs in separates regions of the space; while for the structures beyond 10% strain, all the critical points are involved in a region of highly delocalized electrons that extends throughout the material. This dissimilar electron localization pattern is like to that previously reported for semiconductors such as Ge bulk and metallic systems such as transition metals bulk. © 2017 Author(s).