Semillero
Química teórica y computacional SiquUTeCo
Química teórica y computacional SiquUTeCo
Involucrar a los estudiantes de Química de la U.D.C.A en un ambiente investigativo que puede llegar a ser de alto nivel con relativamente bajo presupuesto en el campo de la química y difundir el uso de la química computacional como herramienta de gran valor para cualquier investigación en química.
Misión
El semillero de investigación en química teórica y computacional tiene como misión fomentar el interés por el uso, entendimiento y creación de herramientas teóricas y computacionales en el campo específico de la química, con el fin de resolver e integrar proyectos con diferentes grupos de investigación en los que desde la química húmeda o tradicional se presentan dificultades debido principalmente a la falta de recursos para llevar a cabo investigación.
Visión
El semillero de investigación en química teórica y computacional tiene como visión para el 2022 ser reconocido por los estudiantes del plan de estudios de Química, quienes hasta ahora no han incursionado en este tema y estén interesados en un trabajo de grado en Fisicoquímica Computacional Aplicada.
Objetivos específicos:
- Desarrollar el interés de los estudiantes por el uso de herramientas computacionales para el estudio de fenómenos en química.
- Incrementar la proyección científica de la Universidad en el campo de la química.
- Potenciar el carácter interdisciplinario de la investigación en los estudiantes.
- Aprovechar conjuntamente los recursos físicos de la universidad para desarrollar proyectos de investigación en el ámbito teórico y computacional.
- Dar mayor visibilidad a la U.D.C.A en eventos científicos y académicos a nivel nacional e internacional.

COORDINADORES
PRODUCTOS DESTACADOS
How the Orientation of BN Units Influences the Aromaticity of Some Iminobora-Benzenes
In the current work, the impact of the orientation of the BN units in some proposed isomers of iminobora-benzene (B6C6N6H6) is analyzed. The analysis is oriented toward determining whether the orientation plays an important role in electronic delocalization (aromaticity). The alternation of the BN units generates several isomers, which were built arbitrarily and systematically with the main goal of measuring their respective electronic delocalization. For the analysis of aromaticity, multiple methodologies (AdNDP, AV1245, AVmin, ELF, LOL, MICD, and Bind) were employed, all of which produced consistent trends. Moreover, the alternation of the BN units affects not only electronic delocalization but also relative stability, with relative energy values of up to 85 kcal/mol observed among the isomers. Interestingly, the most aromatic isomer is the least stable isomer, while the most stable isomer is, with some methodologies, the least aromatic.
Tuning of aromaticity and reactivity in gold-substituted cyclopropenyl cations
This study investigate the structural, electronic, and reactivity properties of the aurocarbon C3H2Au+, C3HAu2 +, and C3Au3+ clusters. A potential energy surface exploration indicates that the most stable isomers adopt cyclic structures, supporting the gold–hydrogen analogy in these cationic systems. These cyclic forms preserve the characteristic geometry of the cyclopropenyl cation, with covalent C–Au interactions confirmed by multiple bonding analyses. All three systems exhibit a delocalized 3c–2e p-bond across the carbon ring, consistent with an aromatic behavior. The substitution of hydrogen by gold alters local reactivity patterns.
In Silico Analysis of the Aromaticity of Some Carbo-Metallabenzenes and Carbo-Dimetallabenzenes (Carbo-mers Proposed from Metallabenzenes)
In the current work, we introduce a novel class of molecules termed carbometallabenzenes, and their aromaticity has been comprehensively analyzed. The molecules were strategically designed with the insertion of acetylene (C=C or C2) units in some selected metallabenzenes. Furthermore, if a second metallic unit is inserted (replacing a sp2 carbon) in the carbo-metallabenzenes rings, a new family of carbo-mers is generated, and this second group has been named as carbo-dimetallabenzenes. The primary objective of this work is to ascertain, through various methodologies, whether these newly proposed molecules retain the aromatic characteristics observed in carbo-benzene. The methodologies employed for bond analysis and aromaticity exploration include the analysis of the molecular orbitals, energy decomposition analysis, electron density of delocalized bonds, magnetically induced current density, and the induced magnetic field (Bind). This study sheds light on that the insertion of the metallic centers reduces the electronic delocalization and their aromaticity is, in some cases, comparable with the electronic delocalization of the inorganic iminobora-borazine and also provides valuable insights into their electronic structure through a multifaceted analysis.