Olga Lucía Mateus Montañez


LÍNEAS DE INVESTIGACIÓN:   Salud Humana y Animal


PROGRAMA:  Química



Licenciada en Química de la Universidad Distrital Francisco José de Caldas, con máster en Química Fina Avanzada de la Universidad de Córdoba-España. Actualmente cursando el cuarto año doctoral del programa de Química en la Universidad de Jaén-España. La experiencia en investigación se enfoca el campo de la química de materiales, síntesis inorgánica y catálisis heterogénea.

LINEAS DE TRABAJO:   Síntesis de nanomateriales, catálisis heterogénea, descontaminación de aguas.


Physicochemical characteristics of calcined MnFe 2 O 4 solid nanospheres and their catalytic activity to oxidize para-nitrophenol with peroxymonosulfate and n-C 7 asphaltenes with air
Fecha de publicación: 01/03/2021

Manganese ferrite solid nanospheres (MSNs) were prepared by a solvothermal method and calcined at various temperatures up to 500 °C. Their surface area, morphology, particle size, weight change during calcination, surface coordination number of metal ions, oxidation state, crystal structure, crystallite size, and magnetic properties were studied. The MSNs were used as catalysts to activate potassium peroxymonosulfate (PMS) for the oxidative degradation of para-nitrophenol (PNP) from water and for the oxidation of n-C7 asphaltenes in flowing air at atmospheric (0.084 MPa) and high pressure (6 MPa). Mn was in oxidation states (II) and (III) at calcination temperature of 200 °C, and the crystalline structure corresponded to jacobsite. Mn was in oxidation states (III) and (IV) at 350 °C and in oxidation states (II), (III), and (IV) at 500 °C, and the crystalline structure was maghemite at both temperatures. MSN catalysts generated hydroxyl (HO·) and sulfate (SO4·-) radicals in the PMS activation and generated HO· radicals in the n-C7 asphaltene oxidation. In both reactions, the best catalyst was MSN calcined at 350 °C (MSN350), because it has the highest concentration of Mn(III) in octahedral B sites, which are directly exposed to the catalyst surface, and the largest total and lattice oxygen contents, favoring oxygen mobility for Mn redox cycles. The MSN350 sample reduces the decomposition temperature of n-C7 asphaltenes from 430 to 210 °C at 0.084 MPa and from 370 to 200 °C at 6.0 MPa. In addition, it reduces the effective activation energy by approximately 77.6% in the second combustion (SC) region, where high-temperature oxidation reactions take place.

Más información